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Abstract- In this paper we study a population of indi-
viduals in a simulated artificial environment. These in-

dividuals have a "body" as well as a "mind", i.e., some
of their features effect their "physical" properties, like
speed and strength, while other features influence their
"9mental" preferences and choices in interacting with the
environment and other agents. We compare two ap-

proaches to adapting the minds of individuals. In ap-

proach 1, the bodies and the minds develop through evo-

lution, while in appropach 2 only the bodies evolve and
the minds are adapted by lifetime-learning. The results
indicate that the evolutionary approach is able to sus-

tain larger and more stable agent populations as well as

maintain a higher degree of individual success compared
to the lifetime learning approach. Furthermore, quite
unexpectedly, the method used for mental development
has a strong effect on the development of the physical
features within the very same environment: The indi-
viduals' bodies evolve to completely different segments
of the physical feature space under the two regimes.

1 Introduction

Many researchers have adopted the use of learning and ar-

tificial evolution mechanisms as a means of adaptation in
simulated agent systems [NF02], [NP95], [MF95], [DB94],
[PLHFOl] though relatively few have focused research ef-
forts on the use of learning or evolutionary mechanisms for
agent controller design in the context of collective intelli-
gence systems [WFP02]. The application of learning or

evolutionary mechanisms for adaptive controllers [NF99]
and the simultaneous evolution of agent body [Sim94] is
an endeavor that has also received relatively little research
attention in the context of collective intelligence systems.

In this paper we present a comparative study of differ-
ent adaptive mechanisms in an artificial system containing
thousands of agents. For the agents we distinguish minds
(controllers, mental features) and bodies (physical features).
For instance, a mental feature can be the preference for
searching food (as opposed to searching other individuals
to mate with). This feature affects an agent's behavior. A
physical feature is, for instance, the agent's muscle mass

that affects their speed.
The artificial environment is called Artificial Environ-

ment with Genetic Inheritance Simulation (AEGIS). Some-
what oversimplifying, it can be perceived as a model of an

ecosystem, containing two entirely different types of inhab-
itants, where one type merely serves as resource (source of
energy) for the other type. From this perspective we can call

the inhabitants plants, respectively animals. Our system can
also be seen as a model of a simple artificial society, where
inhabitants of the second type have (obtain through adap-
tation) a "personality", i.e., individual characteristics that
determine their attitude towards eating, mating, and fight-
ing. It is important to note that the system has no abstract
fitness function to be optimized, the only driving force is the
quest for survival and reproduction. Throughout the rest of
this paper we will not take any particular perspective on the
AEGIS world and we will use the terms animal, individual,
and agent as synonyms; the term inhabitant will stand for
either plants of animals.

Previous work with this environment concentrated on the
effects of environmental variations on the evolution of the
population and the effect of allowing communication be-
tween the individuals, cf. [EEvH99]. Our findings can
be briefly summarized as follows. First, we observed the
best development' in those environments that allowed for
rapid response. In particular, when the move costs were
low (agents could move fast) and when the necessary break
between two consecutive reproduction acts was short (the
population could evolve quickly). Second, we found that
having the possibility of communication can be a matter of
life and death: communicating populations survived in de-
manding environments where mute ones became extint. A
surprising outcome was the observation that in an "easy"
world, where actions cost little energy, the individuals be-
come more aggressive.

The present investigation is performed in the same ar-
tificial environment, although with different research ob-
jectives. Our primary objective here is to introduce an al-
ternative to evolutionary adaptation of the agent controllers
via individual or lifetime-learning and study the differences
between the two approaches. The motivation behind this
idea is that evolutionary learning is a slow mechanism - it
takes place on the time scale of many generations. Indi-
viduals that are born with a better set of features tend to
produce more offspring and the composition of the popu-
lation is slowly changing towards superior features. Indi-
vidual learning is a faster process as it takes place during
an individual's lifetime. Each experience, i.e., interaction
with the environment and/or another agents, delivers data
and the individual can use data mining to develop a model
of successful (re)actions. Such a model is then the core of
its controller and it is being continuously adapted during the
agents lifetime.
We deliberately restricted the scope of individual learn-

IWe defined good development by a constantly high number of individ-
uals, that is, large populations with only small and infrequent fluctuations.
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ing to mental attributes. Applying it to physical features
could be an analogy of sports excercises or any other physi-
cal training, but our interest here is the development of con-
trollers. As a consequence, our comparative experiments
to test the adaptability of AEGIS agents differ only in the
adaptive mechanisms regarding the controllers. In the first
experimental series both the bodies and controllers of agents
have been evolved. In the second one we kept the evolution
of bodies but used lifetime learning to develop the agent
controllers. It is important to note that in the latter case
we used a combination of learning and evolution, but these
were not combined as is typical in many adaptive behavior
studies [NF99]. The difference is that in our combined evo-
lution+learning experiments the two adaptive mechanisms
act in a different space: the individual learning mechanisms
act in the space of agent controllers, while evolution acts in
the space of physical agent properties.

The rest of the paper is organized as follows. In Sec-
tion 2 we present the world and the agents of AEGIS. The
adaptive mechanisms, evolution and individual learning, are
discussed in Section 3. We describe the experimental setup
in Section 4. The results are shown in Section 5 and further
analyzed in Section 6. Finally, the paper is concluded by
Section 7.

2 AEGIS

This section describes the world and the inhabitants of
AEGIS. Space limitations prevent giving all details, for a
complete description we refer to [BurO4].

2.1 AEGIS - World

Scape The artificial world is a two dimensional grid popu-
lated with plants and agents. The grid is wrapped around at
its borders. Each point of the grid is called a cell. The scape
contains width times height cells. A cell can hold at most
one agent and one plant. The time on the scape is divided
into cycles. In each cycle plants and agents can perform ac-
tions. Agents may perform more than one action in a cycle;
plants can perform only one. At initialisation, the scape is
populated uniformly withinitialPopulation number of
agents and initialFlora number of plants.

Plants Plants are the source of energy in the world. Each
plant has a certain amount of energy. This energy in-
creases by growth and decreases by eating. Plants are very
simple creatures who can only perform one action per cy-
cle, which action contains growth followed by reproduc-
tion. They are not evolving creatures, they have all the
same features which do not change. When a plant is born,
it gets a birth energy, which is uniformly drawn between
minBirthEnergy and maxBirthEnergy. This interval is
the same for all plants. Agents get energy from plants by
eating them. A plant dies if its energy drops to zero. The
plant's energy increases by plantGrowth in each cycle.
If a plant reaches a certain energy level, multThreshold,
it tries to reproduce to one neighbouring cell if there is
no plant there. The neighbours of a cell are the ones at
east, west, north and south. If there is no free cell around

but the plant's energy is above launchThreshold then it
launches a seed to a random place on the scape and dies. If
the seed lands on a place which is occupied by an other
plant, then it bounces and is lost. Otherwise it gets ini-
tialised with birth energy. If the energyTrans fer flag is
true, then the parent plant loses the birth energy of the new-
born plant from its own energy.

2.2 AEGIS - Agents

This section briefly overviews the properties of our agents.
The main components of our agent are its body and con-
troller. Additionally, an agent can belong to a particular
species (depending on its body characteristics), can perform
actions, and has a certain energy, vision, speed, mobility,
mortality and it can engage in direct competition by fight-
ing.

Body Agents have 3 inheritable physical properties: gender,
muscle and skin.2 These properties determine their skills
and their relations to other agents. Thus, firstly, agents have
a gender, i.e., male or female. Secondly, they have skin
and muscle, whose strength (skin thickness, resp. muscle
mass) is represented by real values between [0, 1]. Higher
values stand for thicker skin, respectively more muscle. The
agents' physical features can evolve, because the gender,
skin, and muscle parameters are inhertable as described
in Section 3.

Species Based on the skin and muscle attributes we in-
troduce speciation. Two agents belong to the same species
if their skin and muscle attributes are close to each other:
the difference between their skin attributes is less than 25%
(0.25 on our scale); the same goes for muscle. Two agents
from the same species can mate and propagate their genes
through the offspring. Otherwise they arefoes, because they
consume the same resources but are useless for each other
in terms of reproduction. At initialisation, the skin and
muscle attributes are set in such a way that agents from the
same species are close to each other geographically.

Controller The controller enables the agent to determine an
action to perform in a certain situation. If there is no possi-
ble action to perform, then it does nothing. The controller is
a parameterized decision procedure whose parameters (per-
ceived as mental attitudes) are inheritable and evolve over
time together with the physical attributes. Our second ex-
periment is based on acquiring experience during lifetime
and to use this experience to develope a controller. In this
case no mental features undergo evolution. The exact mech-
anisms are described in Section 3.

Genetic makeup Inheritable properties of the agents are en-
coded in their chromosome. These chromosomes are sub-
ject to evolution for they undergo variation (cf. Section 3)
and selection. For the first type of controller (with mental
attitudes), the chromosome consists of 6 genes: 3 genes for
the physical properties (gender, muscle and skin) and 3 for
the mental properties (attack, food, and social). This chro-

20ther physical properties, e.g., vision, are not genetically encoded,
therefore are not evolvable.
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mosome is shown in Figure 1. The chromosome for the sec-
ond type of controller contains only the 3 genes for physical
properties.

Actions Agents can perform the following actions: move
- move to a neighbouring cell, east, west, north or south;
eat - eat the plant on its current location; mate - perform
reproduction with another agent and give life to a child; and
attack - hit another agent. Agents can perform more actions
per cycle.

Energy and eating Agents need energy to live. It is
needed to perform actions, however some actions may be
performed free of cost. Agents obtain energy by eating
plants. The eat action is performable if there is a plant and
the agent is hungry. An agent is hungry when its energy is
below maxEnergy. The energy is transfered from the plant
to the agent by a bite. The bite cannot be bigger than the
hunger or the plant's energy. An eat action is cost free.
Doing nothing costs idleCost energy.

Fighting Agents can fight for resources, i.e., plants. Agents
within the same species do not fight against each other. An
attack action means one hit to a foe. An attack action costs
fightCost, which is substracted from energy. The at-
tack action can be performed if the attacker has more than
fightCost energy and there is at least one foe around
(east, west, north or south). A hit decreases the attacked's
energy by two times fightCost and increases its age by
damage. If the attacked agent's skin is 0 then it dies.

Vision An agent can see its surrounding square shape area
with radius vision. The vision attribute of an agent is
drawn uniformly between minVision and maxVision at
its birth.

Speed The number of actions an agent can perform is deter-
mined by its speed, which depends on skin and muscle.
We omit the exact formula here, but the idea is that an agent
with more muscle can perform more actions; with thicker
skin, it can perform fewer. Each action performed by an
agent increases its age. Thus fast agents are get sooner
weared and teared.

Mobility Agents explore the world to find food, friends and
foes. The move action consists of one step to a neighbouring
cell (east, west, north or south). It costs moveCost which is
substracted from the agent's energy. The move action can
be performed if there is at least one free direction and the
agent has more than moveCost energy.

Mortality Agents have an age attribute which tells how
many actions they have performed in their life. The age
attribute is increased by one if the agent performs an ac-
tion. The lifetime is limited by deathAge. If an agent's
age reaches deathAge then it dies. When an agent is
born, its age is set to 0 and its deathAge is uniformly
drawn between controllereathAge and maxDeathAge.
An agent may also die when its energy level is 0.
At initialisation, energy is uniformly choosen between
minInitialEnergy and maxInitialEnergy.

Figure 1: Example chromosome setup of agent with inheri-
table physical and mental attributes.

3 Adaptive Mechanisms

All agents have the same kind of body as outlined above, but
they can have two types of controllers: either based on men-
tal attitudes or on an eaction chooser developed by observa-
tions. We make this distinction because of the two learning
types involved that enable the controller to adapt: evolu-
tionary learning and lifetime learning. Evolutionary learn-
ing tweaks the mental attitudes of agents; lifetime learning
works directly on an action chooser adjusting it by the ob-
servations that an agent makes. In all experiments, the body
of the agents is subject to evolutionary learning.

This Section describes the adaptive learning mechanisms
for the agent's body (only evolutionary learning) and con-
trollers (both evolutionary and lifetime learning).

3.1 Body

Mating and reproduction

A child is born if two agents mate. Several conditions must
hold for them to make reproduction possible: 1) they must
be of opposite sex; 2) they must be close enough to each
other (maximum distance is 1 cell); 3) they both must be
fertile: their age is between beginChildBearingAge and
endChildBearingAge; 4) they both must have energy >
sexcost; 5) there must be a cell around the initiating par-
ent that can hold the child; 6) their last reproduction action
must have been more than sexRecoveryPeriod number
of actions ago; 7) they must be from the same species; and
8) they must have similar mental attitudes (explained in de-
tail below).

Chromosomes are real-valued vectors, with gene values
between 0 and 1. The child's chromosome is constructed
from the parent's chromosomes using 1-point crossover fol-
lowed by Gaussian mutation with mean zero and standard
deviation mutationSigma.
Crossover The crossover operator produces one chromo-
some. If chromosome length is n then a crossover point
cp is uniformly drawn from [0, n]. The first cp number of
genes are get from the first parent and the remaining genes
after position cp are get from the second parent. Who is the
first, is randomly choosen.
Mutation After the crossover operator produced the new
chromosome, a Gaussian mutation operator is applied to it.
The mutation point mp is uniformly drawn from [1, n]. The
selected gene undergo mutation. A random value drawn
from a Normal distribution with mean 0 and standard de-
viation mutationSigma is added to the gene, cutting its

1450

.1 .7 .3 .5 .8 .5



1451

yes
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Figure 2: Agent type that performs actions based on mental
attitudes.

value to fall between [0, 1].

gene' = max(O, min(l, genemp + a))

where cf E N (0, mutationsigma).

3.2 Controller

3.2.1 Evolution

Consider Figure 2 which shows the agent controller type
based on mental attitudes. This controller contains the fol-
lowing attitudes: food - measure of affinity to eat; social
- measure of affinity to be social; and attack - measure
of affinity to fight. These attitudes can take values between
[0, 1]. The higher the value the agent has higher affinity for
a certain action. At initilisation, these mental properties are
initialized randomly, drawn uniformly between [0,1]. The
agent type is taken from related work on emerging mental
features [EEvH99].

Based on its mental attitude, an agent decides to ei-
ther move, eat, mate or attack. The action chooser draws
three random numbers uniformly: a E [0, attack], f E
[0, food] and s E [0, social]. Let f be the agent's current
affinity to eat, a its affinity to attack and s for being social,
i.e., to mate. Let m = max(a, f, s). As shown in Figure 2,
the agent's controller now prescribes the action that it will
perform. If an agent chooses to move but cannot perform
this (because it has not enough energy), then it does noth-
ing. Note that doing nothing may has cost.

The same evolutionary process that was explained above,
which was used for developing the physical properties (skin
and muscle), is applied here for developing the mental at-
titudes. As mentioned before, evolution in this case works
on a chromosome consisting of both physical and mental
properties (6 genes) instead of only physical properties (3
genes).

3.2.2 Lifetime Learning

Consider Figure 3 that shows the agent controller type that
chooses actions directly based on observations (instead of
indirectly via mental attitutes). The agent receives on its
input information about observed food, friends and foes
around. How much it can observe, depends solely on its

environment
statns

action

Figure 3: Agent type that performs actions directly based
on observations.

vision. An agent also knows about its internal state:
1) its energy, 2) its sexRecover, and 3) whether it is
underAttack.

Figure 3 shows two major components: the action
chooser and the direction chooser. The action chooser can
be learned, the direction chooser is fixed.

Action chooser The action chooser is a decision tree that
outputs a particular action to perform in a given situation.
At initialisation, the agent gets an handmade decision tree
to rank actions. Throughout the agent's life, it collects ex-
perience, based on which it builds a new action chooser.

Experience is a set of observations. An observation is
an (environment, status, action, success) tuple. When an
agent performs an action it creates an observation and adds
it to its experience. An agent can only hold xpCapacity
number of observations. If it reaches its capacity then a
randomly chosen observation is thrown away and the new
one is added to its experience. This is calledforgetting.

An observation contains the status of the agent (energy,
sexRecover and underAttack), the state of the environ-
ment, the action it decided on, and the success of the
action, which is an integer value. A more successful ac-
tion gets a higher succes value. Success is determined by
events occurred during this and next action. Each event has
a weight, which can be positive or negative. This weight
is added to success every time an event occurs. The fol-
lowing events are recorded: 1) mate - an agent takes part
in reproduction, which is weighed by benefitMate; 2) at-
tack - an agent attacks another agent, which is weighed by
benefitAttack; 3) being attacked - an agent is attacked
by another one, weighed by benefitBeingAttacked; 4)
eat - an agent eats food, weighed by benefitEat; 5) star-
vation - an agent's energy is below maxEnergy / 2 and is
weighed by benefitStarvation.
We denote the average success of all actions performed

by an agent by kSucc. (Note that we can measure kSucc
for agents with mental attitudes as well.)

The action part of the observation contains the action
type (move, eat, mate or attack). In case of move, it also
contains the selected direction.

The action chooser uses a decision tree to predict the suc-
cess of an action if performed in a certain situation. The
input of this decision tree is based upon the structure of the
observations. The action chooser predicts the success of all
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Exp Body Controller
1.1 evolutionary evolutionary
1.2 evolutionary lifetime learning
2.1 evolutionary constant (best evolved)
2.2 evolutionary constant (best learned)

Table 1: Experimental design.

performable actions in the given situation using its decision
tree, and chooses the most successful action. For learning,
Weka's J4.8 decision tree builder3 was used with default pa-
rameters [Qui93].

Direction chooser Direction choosing determines the direc-
tion in which an agent moves. Each free direction is evalu-
ated by the evalDirection function. This function works
based on the energy of the agent: if the energy is under 50%
of maxEnergy, then the agent is inclined to move towards
food; if it is over 75% ofmaxEnergy, then it moves towards
foes; in all other cases it moves towards friends.

4 Experiments

In the following we describe the experimental setup includ-
ing the experimental design, the parameters that we fixed
throughout all experimental sessions, and the variable pa-
rameters that we monitored throughout running the experi-
ments.

4.1 Experimental Setup

Table 1 shows the design of the experiments reported here.
The physical body of the agent (skin and muscle) is al-
ways learned evolutionary. As for developing the con-
trollers, we conducted two experiment series, each consist-
ing of two subseries. In the first series the agents adapt their
controllers by means of either evolutionary learniing (1.1) or
lifetime learning (1.2). In two series of control experiments
we took the most successful controller from these runs and
executed simulations with all individuals having the same
controller, not changing during a run. In these cases the
agents still adapt their physical properties (skin and muscle)
by means of evolutionary learning. For each of these four
series, 10 independent runs were conducted.

4.2 Fixed Parameters

We took the experimental parameters for the world and
agents from [EEvH99] of which this work is a continua-
tion. These parameters include, among others, initial popu-
lation size, maximum life time, movement cost, sex recov-
ery, etcetera. For details we refer again to [BurO4].

4.3 Monitors

For all experimental sessions, we recorded basic statistical
properties (mean, standard deviation, minimum, maximum)
of the following measures in each run: 1) number of agents

3Weka is an open source datamining library written in Java. J4.8 is
Weka's implementation of the latest C4.5 Revision 8 decision tree builder
algorithm.

Exp Population size Avg kSucc
Mean Stdev Mean Stdev

1.1 8888.64 379.76 3.41 0.32
1.2 1660.93 892.77 1.39 0.71
2.1 9866.40 18.02 4.57 0.05
2.2 4004.24 1254.52 1.69 0.58

Table 2: Statistics over collected data.

and plants; 2) number of agent births and deaths; 3) average
speed of agents; and 4) average number of different actions
performed per cycle. Additionally, we recorded the skin-
muscle distributions in the last cycle of each run.

5 Results

The obtained graph results of the experiments are shown in
Figures 4 to 11. Each Figure shows the result of a repre-
sentative run of a particular session. The results concerning
the physical developments of the agents are shown as den-
sity maps on the skin-muscle plain, where a darker colour
means higher density (more agents) in a given region mea-
sured in the last population.

Besides these visual representations of the experimen-
tal outcomes we also provide some statistical data in Table
2. For each experimental session, we show the population
size (number of agents) and the average kSucc (explained
in Section 3).

6 Analysis

Here we consider the otcomes as shown in Figures 4 to 11
and the statistics in Table 2.

Population Dynamics From experiments 1.1 and 1.2 we
observed that both the evolutionary and lifetime learning
populations can lead to oscillating and stabilising popu-
lations. However, the majority of evolutionary popula-
tions stabilises, whereas the majority of lifetime populations
keeps oscillating. This is illustrated in Figures 4, 8 and Fig-
ures 6, 10 that show typical runs. It can also be derived
from Table 2 where the ratios between mean and standard
deviations are much smaller for the evolutionary run than
for the lifetime learning run. For comparing sessions 1 and
2, we look particularly at phase transitions which are the
time points at which an oscillating population changes into
a stabilising one. We see that the a phase transition for evo-
lutionary learning occurs earlier in the control experiment
(2.1) than in the standard experiment (1.1), giving an extra
indication of the superiority of the evolved controller used
in experiment (2.1).

Statistics Firstly, we observe that the evolutionary popula-
tions in both the standard (by factor 4) and control experi-
ments (by factor 2) are much larger than the lifetime learn-
ing populations. Secondly, the evolutionary populations are
more stable with max standard deviation of 5%, while the
lifetime learning populations have standard deviations up to
50%. Thirdly, we observe that evolutionary learning ob-
tains more successfull controllers. This is surprising, since
it only implicitly optimizes kSucc, whereas lifetime learn-
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ing explicitly optimizes it. Finally, for the control experi-
ments (2.1 and 2.2), we see that both mechanisms beat the
standard ones (1.1 and 1.2) - this means that in both cases
something was indeed learned.

Physical Development To our surprise, we observed that
the two mechanisms lead to different physical bodies even
though the environment remained the same. This can be
concluded from the density maps that show the muscle-
skin distributions. Additionally, we observe that the evolu-
tionary controllers in experiments 1.1 and 2.1 are consistent
with each other - both obtain physical bodies in the lower-
right quadrant of the skin-muscle density maps. We also
observe that the lifetime learning controllers are not consis-
tent with each other in experiments 1.2 and 2.2. This leads
us to conclude that lifetime learning may not be able to de-
velop stable physical bodies.

7 Conclusions

From a very coarse-graded perspective we can observe that
our system does have a stable state with large, constant pop-
ulations, cf. Figures 4 and 6. Whether or not such a stable
state is reached depends on the "personalities" of the inhabi-
tants, that is, on the agent controllers which, in turn, depend
on the applied mechanism of adaptation. To this end see
Figures 8 and 10.

From the perspective of comparing the the evolutionary
approach with the lifetime learning approach to empower
mental development (that is, the adaptation of the agent con-
trollers) the following can be noted. In the AEGIS word,
as used here, the evolutionary approach was clearly more
successful in the sense that agent populations whose con-
trollers have been evolved were larger and more stable than
those whose controllers have been learned. Additionally,
these evolved agents obtained a higher degree of success,
cf. Table 2. These differences were observable in the exper-
iments with the adaptation mechanisms working on-the-fly,
as well as in the control experiments that utilized the results
of these in a nonadaptive fashion.

An intresting angle for evaluating our experimental data
is that of the development of the bodies. Considering that
the environment (properties of plants, etc.) and the adapta-
tion mechanism applied to the bodies of the agents were the
same in both types of experiments, we expected no signifi-
cant difference between the emerged physical properties of
the agents. However, the results clearly show that the mech-
anism utilized to derive an agent controller strongly affects
the development of agent body. Further research is required
to investigate the scope of this effect, to study under which
circumstances, i.e., when, it happens and to find explana-
tions clarifying why it happens.
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